Proyecto TOBEEM

Directrices energéticas integrales de edificios de oficinas en Madrid

Viabilidad del diseño de edificios de coste y consumo energético mínimos: horizonte 2020.

Jordi Pascual. AIGÜASOL Carlos Expósito. ALIA

INTRODUCCIÓN

Objetivos y marco de referencia

Determinar los límites razonables de prestaciones energéticas exigibles a edificios de oficinas (Madrid) en el futuro próximo;

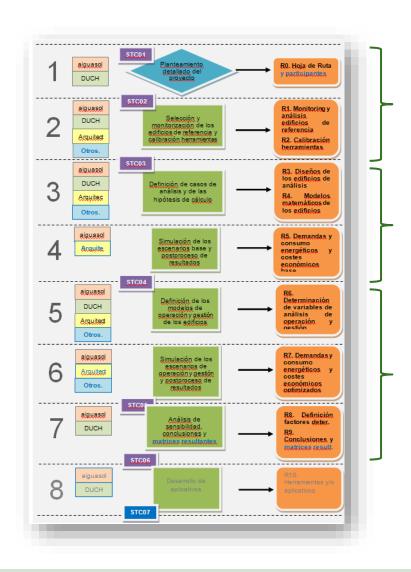
- Tecnologías y diseños constructivos y arquitectónicos
- Costes del ciclo de vida en perspectiva de cost optimal
- Normativa vigente y tendencias a 2020

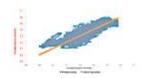
Determinar parámetros y escenarios que permitan optimizar el ratio costes vs. el binomio operación-confort en distintos escenarios.

Servir de base para posibles ampliaciones específicas del Código Técnico para Edificios de Oficinas

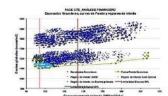
Equipo desarrollo

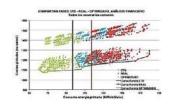
Financiación

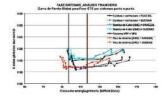


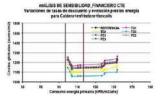

Metodología general

CONDICIONES REALES Y DATOS CALIBRACIÓN

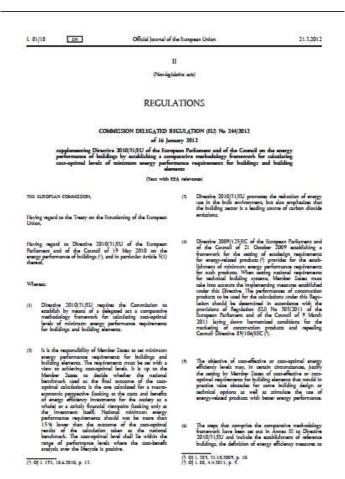


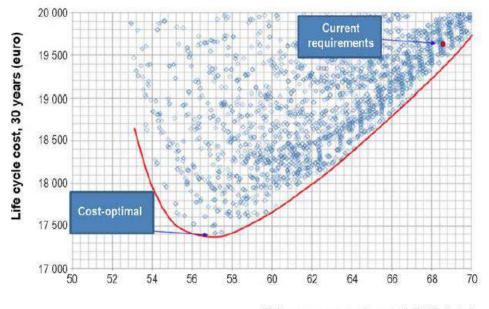



DEFINICIÓN Y ANÁLISIS ESCENARIOS CTE



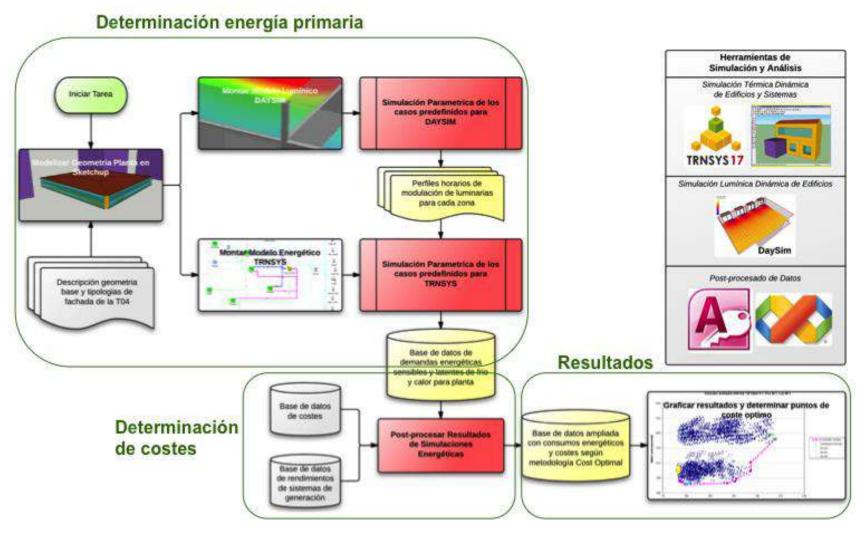
DEFINICIÓN Y ANÁLISIS ESCENARIOS REAL Y OPTIMIZADO, SISTEMAS Y ANÁLISIS DE SENSIBILIDAD





CONCLUSIONES FINALES: DIRECTRICES Y OBJETIVOS DE FUTURO

Contexto procesal – Cost optimal (EPBD 2010)



Primary energy demand (kWh/m²a)

Metodología de análisis de escenarios (constructivos, arquitectónicos y de sistemas por usos, y en base a costes futuros)

Metodología planteada para el análisis genérico de escenarios, y no concreto de un caso.

Esquema Metodológico

Más de 20.000 escenarios de edificios de oficinas de Madrid analizados

Criterios de selección de edificios tipo

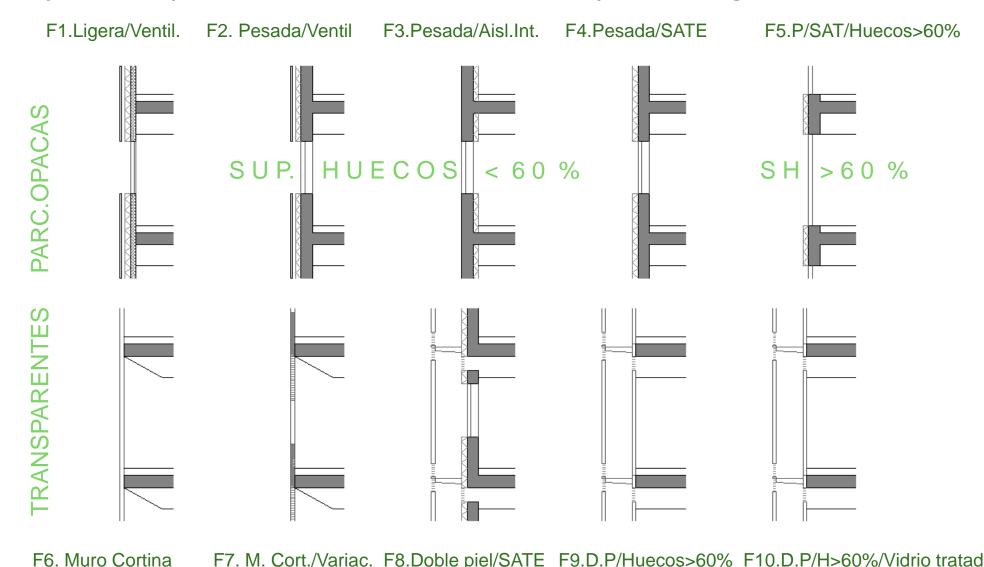
Selección de seis edificios de oficina representativos del parque terciario existente en Madrid, que se monitorizaron durante 10 meses.

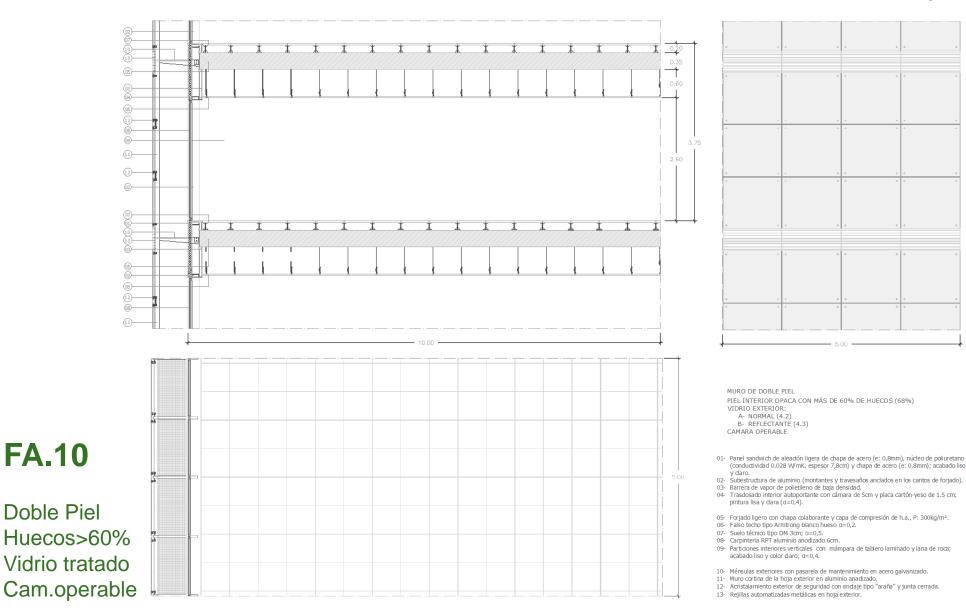
- Anteriores y posteriores al CTE 2006, (de 1990 a 2010)
- Situados en Madrid y su entorno metropolitano
- En uso y ocupados.
- Posible obtener información básica inicial para analizar su idoneidad (Publicaciones, páginas web, edificios conocidos, otros).
- Disponibilidad de datos e información necesaria de los edificios: planos, memorias, facturación, datos adicionales, otros.
- Abanico variado y representativo de tipologías en planta, altura, superficie construida, porcentaje de huecos, soluciones de envolventes y sistemas ...
- Calidad arquitectónica, representatividad empresarial, condiciones de uso y distintos niveles de coste

Selección de edificios tipo

MUESTRA INICIAL DE 29 EDIFICIOS documentados

Selección de edificios tipo Edificios preseleccionados



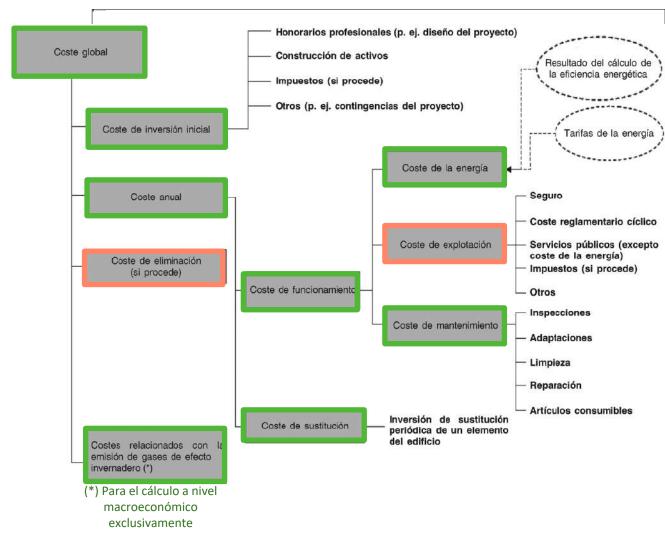

Selección de fachadas tipo

Los tipos básicos que se consideran en el desarrollo del trabajo serán los siguientes:

F7. M. Cort./Variac. F8.Doble piel/SATE F9.D.P/Huecos>60% F10.D.P/H>60%/Vidrio tratado

Selección de fachadas tipo

Definición de escenarios de simulación y costes de soluciones


- √ Variaciones de costes por altura y tipología de edificio
 - 1. Tipología de fachadas: (Según tipos de hoja interior, aislamiento térmico y hoja exterior).
 - 2. Tipología de carpinterías (Interior y exterior)
 - 3. Tipología de vidrios (Acristalamiento interior y exterior)
 - 4. Tipología de Elementos de sombra
 - 5. Inercia (Forjados, solados, falsos techos)
 - Sistemas de Generación: Caldera + enfriadora, Bomba de calor, Sistema VRF, Red de distrito.
 - 7. Sistemas de Difusión: Fancoil, Suelo radiante, VRV.
 - 8. Fase de optimización (control y gestión)
- (EN TORNO A 17.500 SIMULACIONES)

Determinación costes globales Hipótesis y fuentes I

OBJETIVOS

base de datos de precios para determinar, a partir de ella, los costes asociados a cada uno de los escenarios ya definidos, y que permitan desarrollar el análisis de coste óptimo.

Según criterios del Reglamento Delegado (UE) 244/2012 y de la Directiva 2010 / 31 / UE, sobre eficiencia energética de los edificios, que establece el marco metodológico comparativo para calcular los niveles óptimos de rentabilidad.

Determinación costes globales – Fase CTE Hipótesis y fuentes III

PROCESO DE GENERACIÓN DE COSTES

Precios descompuestos

Ext 01	m²	Hoja exterior de piedra natural, en fachada ventilada, anclaje	157,04			
		oculto.				
Hoja exterior de fachada ventilada de 4 cm de espesor, de placas de arenisca Bateig Beige, acabado						
abujardado, 60x40x4 cm, con anclajes puntuales, regulables en las tres direcciones, de acero						
inoxidable AISI 304, fijados al paramento soporte con tacos especiales.						

Desc.	Ud	Descomposición	Rend.	p.s.	Precio
					partida
mt18ban010hb	m²	Placa de arenisca nacional, Bateig Beige,	1,15	58,74	67,55
		60x40x4 cm, acabado abujardado, según			
		UNE-EN 1469.			
mt19paj120a4	Ud	Repercusión, por m² de hoja exterior de	1,00	45,00	45,00
500		fachada ventilada de placas de piedra			
		natural, del sistema de anclaje formado por			
		anclajes puntuales regulables en las tres			
		direcciones, de acero inoxidable AISI 304,			
		fijados al soporte de hormigón o fábrica de			
		ladrillo macizo o perforado (fck>=150 kp/cm²)			
		con tacos especiales.			
mo006	h	Oficial 1ª montador.	1,05	17,26	18,11
mo048	h	Ayudante montador.	1,11	15,62	17,37
	%	Medios auxiliares	3,00	148,03	4,44
	%	Costes indirectos	3,00	152,47	1.53

PASO 1: Precios descompuestos

PASO 2: Precios Unitarios de cada solución:

Dos alturas de edificios: B+5 y B+1 1 Dos tipologías: Planta cuadrada y bloque lineal)

PASO 3: Coste de Planta tipo (PEM) de 900m².

Repercusión de costes fijos y zonas comunes de planta

PASO 4: Repercusión de otros costes fijos (Edificio Completo) Cimentación, Saneamiento, Planta Baja y Cubierta (Para 2 tipologías y 2 alturas)

> PASO 5: Presupuesto de obra PEC = PEM x 1.19

PASO 6: Coste de Inversión
Presupuesto General = PEC x 1,10

Coste de mantenimiento anual

Coste de mantenimiento anual:

Coste de construcción

157,04

1,10 To al:

Determinación costes globales – Fase CTE Hipótesis y fuentes VII

COSTES DE MANTENIMIENTO

Desglosados en los precios descompuestos.

COSTES DE REPOSICIÓN

No se consideran elementos constructivos con vida útil inferior a 20 años del periodo de cálculo .

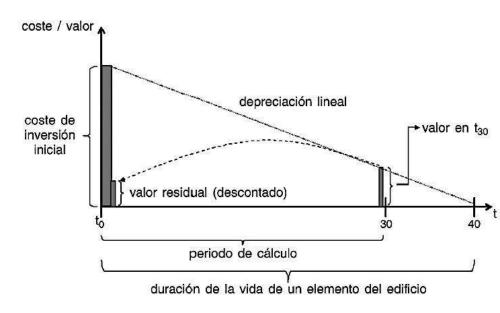
Diferente vida útil de elementos en cálculo del valor residual.

VALOR RESIDUAL

Se consideran periodos de vida útil: Carpintería convencional., vidrios, generación y difusión 20 años. Resto de elementos: 50 años

COSTES DE ENERGÍA

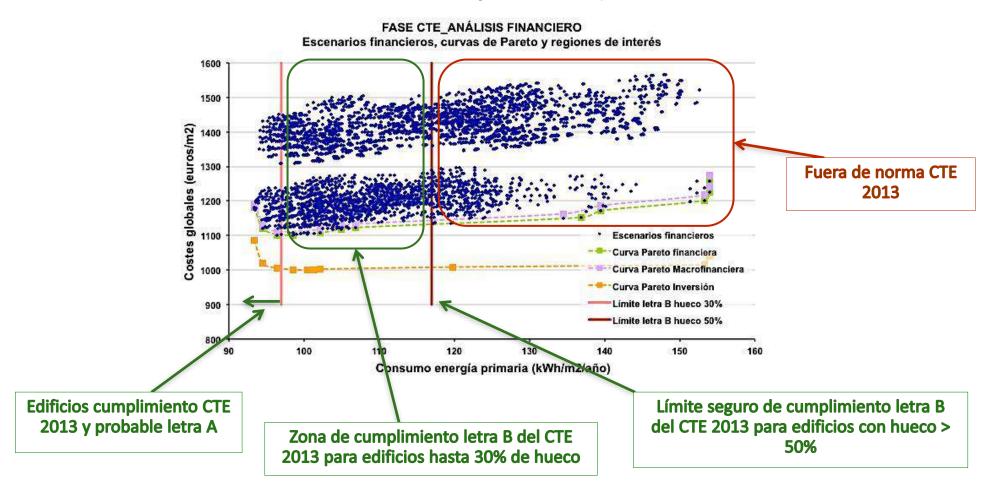
Datos propuesta del Ministerio


TASA DE DESCUENTO

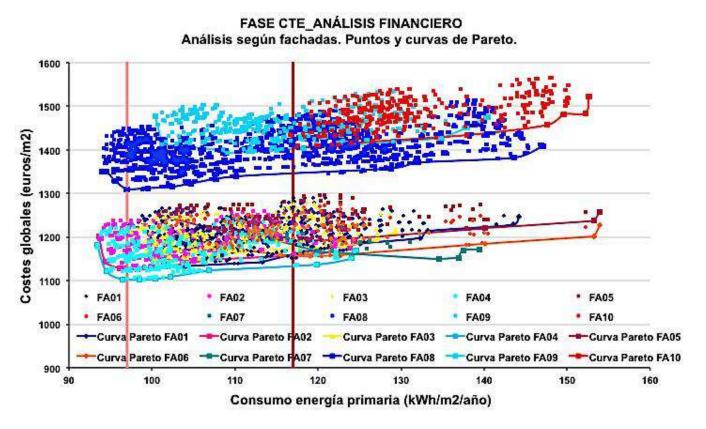
3% según Ministerio.(Variaciones hasta 7%)

FACTORES DE PASO Y COSTES EMISIONES

Según propuesta del Ministerio

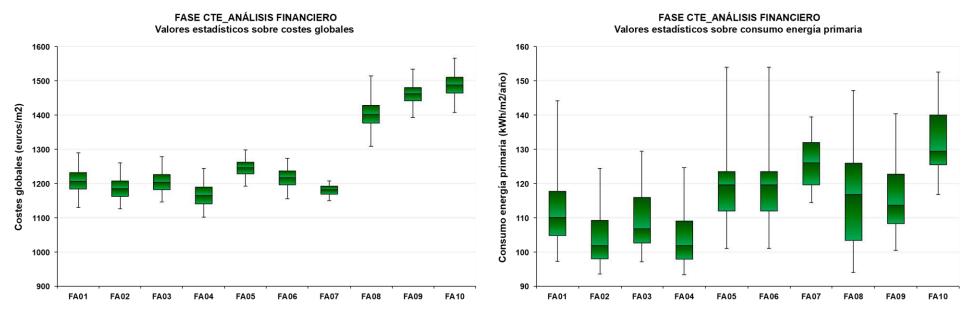

PEC de 875 a 1390 €/m2

RESULTADOS EN EL CONTEXTO CTE


Resultados generales Fase CTE

Cada punto un edificio en todo su ciclo de vida (análisis financiero, macroeconómico y en inversión)

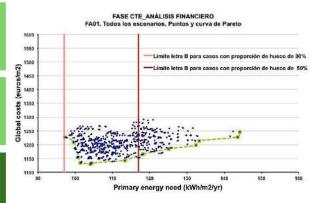
Resultados por Fachadas Fase CTE I


Cada color representa todos los escenarios de edificios para una determinada tipología de fachada

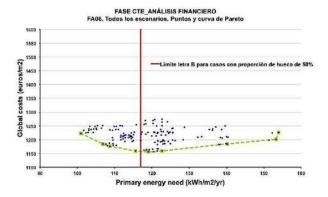
- Se observa una disgregación evidente entre las fachadas de doble piel (FA08, FA09 y FA10) y el resto.
- Ello se da sobretodo a nivel de costes globales, aunque a nivel de energía primaria también hay un corrimiento a valores elevados para estas tipologías de fachada.

Resultados por Fachadas Fase CTE II

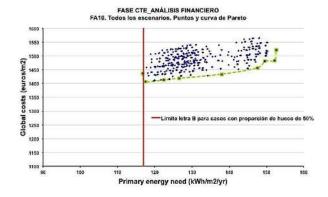
Análisis de valores estadísticos (máximo, mínimo, percentiles del 25, 50 y 75%) de costes y consumos



- Las fachadas más "convencionales" se caracterizan por una mayor "compactación" de resultados de costes globales en la franja baja (1.100 – 1.300€/m2).
- Los muros cortina se encuentran en una franja similar de costes, pero con valores (y amplitudes) más elevados de energía primaria.
- Las dobles pieles se encuentran en la zona más elevada de costes globales, con valores entre 1.300 1.600€/m2, y con amplitudes elevadas en primaria


Resultados por Fachadas Fase CTE III

Ejemplos representativos de tres tipologías de Fachadas


Fachada 01 - Opaca

Fachada 06 – Muro cortina

Fachada 10 – Doble hoja

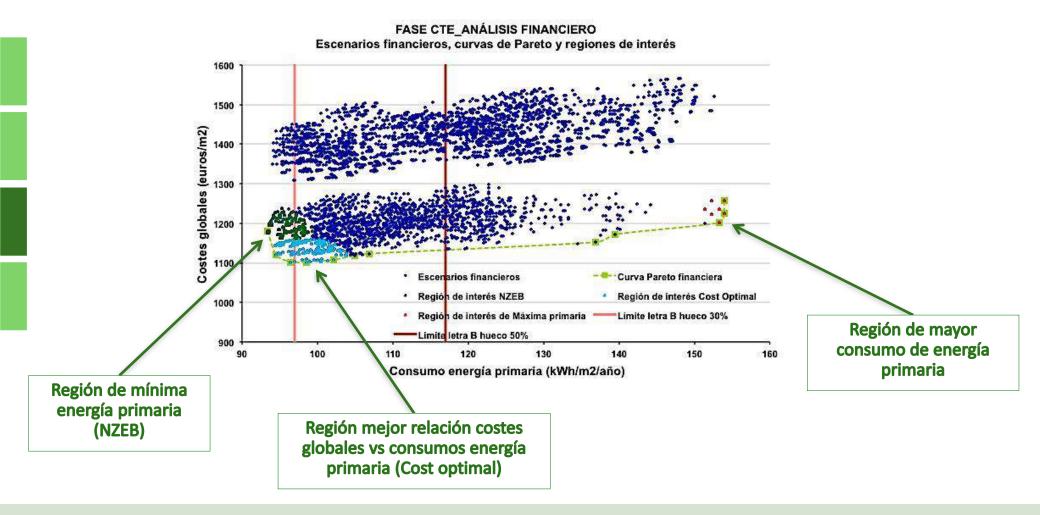
Compactación escenarios: menos complejidad

Costes reducidos

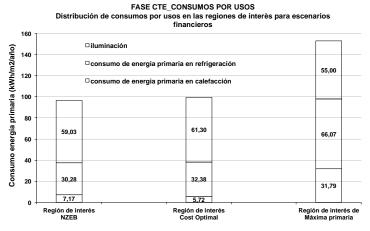
Consumos más centrados en la zona de cumplimiento

Escenarios distribuidos: más complejidad

Costes reducidos

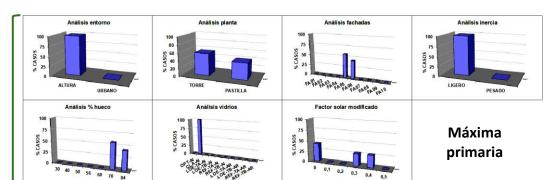

Consumos centrados en el límite normativo Compactación escenarios: menos complejidad

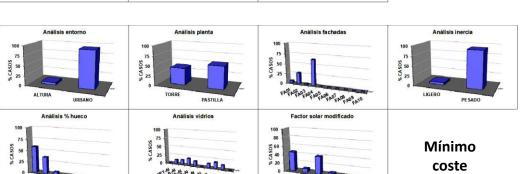
Costes muy elevados

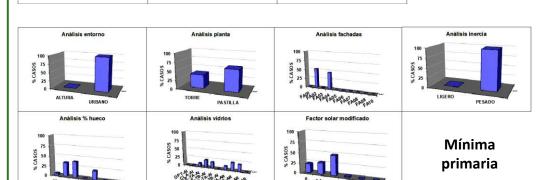

Consumos totalmente fuera de la región de cumplimiento CTE

Resultados regiones interés Fase CTE I

Análisis de soluciones constructivas y arquitectónicas en base a las regiones de interés

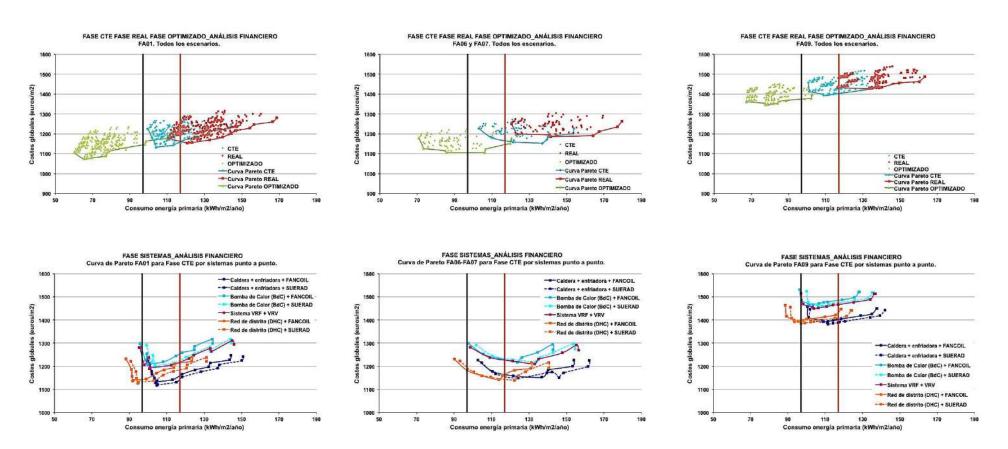



Resultados regiones interés Fase CTE II



Importancia en el diseño de iluminación (no solo activa) y refrigeración. Calefacción en grandes consumidores

- Máxima primaria: Edificios en altura, con fachadas tipo muro cortina ligeras, elevadas proporciones de hueco, y vidrios dobles claros con cámara de aire y sin tratamiento.
- *Mínimo coste*: Edificios urbanos con fachadas convencionales pesadas, con reducido porcentaje de huecos y factores solares modificados reducidos.
- Mínimo consumo: Edificios urbanos, principalmente tipo pastilla, con fachadas convencionales pesadas, con reducido porcentaje de huecos y factores solares modificados reducidos

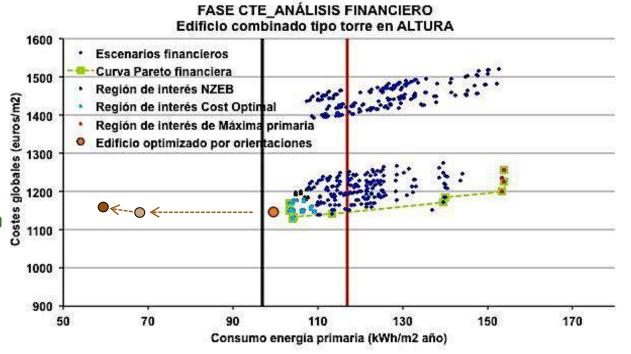


Orientación otros resultados

El análisis en condiciones reales de operación (según observación), condiciones optimizadas (domótica e infiltración), en variaciones de sistemas, o según variaciones de precios de energía o tasa de descuento muestra LAS MISMAS TENDENCIAS EN RELACIÓN A TIPOLOGÍAS EDIFICATORIAS Y CONSTRUCTIVAS aunque, evidentemente, para otros valores.

CONCLUSIONES Y FUTURO

Contexto de conclusiones


Contexto:

- Edificios de oficinas de Madrid bajo CTE 2013
- Escenarios acotados representativos de casuísticas genéricas (no casos singulares)
- Escenarios bajo condiciones de sistemas según mercado (en rendimientos) con precios acotados (en referencias)

El estudio ofrece, en sus diversos documentos parciales, **múltiples conclusiones específicas que merecen,** en un análisis más de detalle de los resultados, **ser analizadas y aplicadas directamente o en otros estudios sectoriales.**

Conclusiones generales básicas

¿Cómo puede contribuir la edificación a reducir la distancia entre los edificios NZEB y los de coste óptimo o incluso mejorar sus resultados energéticos y económicos?

- Es factible construir edificios de oficinas de consumos energéticos reducidos a costes globales significativamente inferiores a los usuales en mercado de los últimos años. Objetivo razonable: edificios con consumos en torno a 60kWh/m2 año, en construcciones con costes entre 1.100 y 1.200€/m2.
- Construir edificios de oficinas energéticamente eficientes a costes óptimos resulta más económico, considerando tanto costes globales del ciclo de vida, como costes de inversión.

Conclusiones según tipologías edificatorias

- Los principales elementos a considerar en los edificios eficientes, en costes y energía, son el diseño arquitectónico y constructivo, y la operación en su vida útil, siendo la consideración del sistema energético el factor de menor peso.
- Los edificios de fachadas transparentes (altas proporciones de hueco, muros cortinas y dobles pieles) resultan más caros y se asocian a mayor consumo que edificaciones de soluciones convencionales (opacas, inerciales y protegidas). Especialmente relevante en las dobles pieles.
- Los edificios transparentes tienen asociado, de promedio, un sobrecoste de más de 300 €/m² y mayor consumo en energía primaria en más de 25 kWh/m²año. Tanto en inversión, como en operación y mantenimiento, los edificios transparentes no son ni económica ni energéticamente rentables. Estas conclusiones son invariantes por orientaciones debido a su normalización por normativa.
- Las actualizaciones, presentes y en un futuro próximo, de la normativa de la edificación obligan a considerar como factor decisivo el vector energético y modificarán el sector de forma relevante.

Desarrollos futuros pendientes

En base a la metodología desarrollada:

- •Un análisis en profundidad (optimizaciones de detalle) y amplitud (zonas climáticas), revertiría en una visión integral de los planteamientos descritos y permitiría avanzar en la dirección de aproximar económicamente los NZEB a la región de coste óptimo.
- •Tanto por realidad del sector, como por la del mercado, y en base a las directrices observadas, el análisis para edificios existentes en un marco de rehabilitación energética, revertiría en un conocimiento requerido para hacer frente a la actividad del sector con garantías.
- •La profundización en el análisis de condiciones reales vs escenarios de diseño, se prevé fundamental para pasar del paradigma a la realidad requerida.

Proyecto TOBEEM

Directrices energéticas integrales de edificios de oficinas en Madrid

Viabilidad del diseño de edificios de coste y consumo energético mínimos: horizonte 2020.

Jordi Pascual. AIGÜASOL Carlos Expósito. ALIA

